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BACKGROUND: The prevalence of type 2 diabetes (T2D) has more than doubled since 1980. Poor nutrition, sedentary lifestyle, and obesity are among
the primary risk factors. While an estimated 70% of cases are attributed to excess adiposity, there is an increased interest in understanding the contri-
bution of environmental agents to diabetes causation and severity. Arsenic is one of these environmental chemicals, with multiple epidemiology stud-
ies supporting its association with T2D. Despite extensive research, the molecular mechanism by which arsenic exerts its diabetogenic effects remains
unclear.

OBJECTIVES:We conducted a literature search focused on arsenite exposure in vivo and in vitro, using relevant end points to elucidate potential mech-
anisms of oral arsenic exposure and diabetes development.

METHODS:We explored experimental results for potential mechanisms and elucidated the distinct effects that occur at high vs. low exposure. We also
performed network analyses relying on publicly available data, which supported our key findings.
RESULTS: While several mechanisms may be involved, our findings support that arsenite has effects on whole-body glucose homeostasis, insulin-
stimulated glucose uptake, glucose-stimulated insulin secretion, hepatic glucose metabolism, and both adipose and pancreatic b-cell dysfunction.
DISCUSSION: This review applies state-of-the-science approaches to identify the current knowledge gaps in our understanding of arsenite on diabetes
development. https://doi.org/10.1289/EHP4517

Introduction
Arsenic is a naturally occurring metalloid in the earth’s crust,
found in water, air, food, and soil (Hughes et al. 2011). More than
200 million individuals are exposed to arsenic in drinking water,
with high prevalence in Taiwan, Bangladesh, India, South
America, and the United States (Hughes et al. 2011). The principal
route of arsenic exposure occurs via the ingestion of contaminated
drinking water and food, which continues to be a widespread pub-
lic health concern (ATSDR 2007). Foods that have been reported
to have high levels of inorganic arsenic include rice and rice-based
products, poultry, apple juice, wine, and beer (Castriota et al.
2018). Runoff and leaching from rocks, sediment, and anthropo-
genic sources are significant processes of drinking water contami-
nation (ATSDR 2007). Oral inorganic arsenic exposure has been
reported in epidemiological studies to be associated with a wide
range of diseases, including cancers of the skin, bladder, lung, kid-
ney, and liver, in addition to developmental, dermatological, neu-
rological, respiratory, immune, cardiovascular, endocrine, and
metabolic disorders (Hughes et al. 2011; Naujokas et al. 2013).
Additional studies have been published to further investigate the
association between arsenic and type 2 diabetes (T2D) (Castriota
et al. 2018; Farzan et al. 2017; Grau-Perez et al. 2017; Pan et al.
2013; Peng et al. 2015).

Elemental arsenic is present in both inorganic and organic
forms and in various oxidative states (Hughes et al. 2011). Both
the pentavalent form, arsenate (iAsV) and the trivalent form,
arsenite (iAsIII) have been detected in drinking water (Hughes
et al. 2011). After oral exposure, arsenite metabolism in humans
occurs primarily in the liver via arsenic (+3 oxidation state)
methyltransferase (As3MT) and involves sequential reduction
and methylation reactions that lead to the formation of both triva-
lent and pentavalent monomethylated (MMA) and dimethylated
(DMA) metabolites (Agusa et al. 2011). A reductive methylation
model has been proposed where trivalent metabolites are conju-
gated to glutathione (GSH) and ultimately oxidized to pentava-
lent arsenical metabolites (MMAV+ and DMAV+ ) as the final
products (Hayakawa et al. 2005; Agusa et al. 2011). In recent
years, the production of trivalent methylated species has been
evaluated and deemed a bioactivation process that increases an
individual’s susceptibility to arsenic toxicity (Agusa et al. 2011;
ATSDR 2007). Methylarsonous (MMAIII+ ) and dimethylarsi-
nous acids (DMAIII+ ) have been found to be cytotoxic (Hou
et al. 2013) and genotoxic (Petrick et al. 2000; Styblo et al. 2000)
in both murine and human cell lines.

Studies have attempted to distinguish the risk of arsenic-
induced T2D based on exposure level with inconsistent results
across experimental models. In 2012, an expert panel assembled
by the National Toxicology Program (NTP) deemed evidence for
animal research on the topic of arsenic and diabetes inconclusive
due to the dissimilarity of animal exposures across studies and to
those reported in human exposure studies (Maull et al. 2012). The
concentration of arsenite in drinkingwater used in published in vivo
metabolic studies have ranged from 100 ppb up to 50 ppm (Ditzel
et al. 2016; Garciafigueroa et al. 2013; Adebayo et al. 2015; Druwe
et al. 2012; Paul et al. 2011; Song et al. 2017; Maull et al. 2012). In
vivo studies have large discrepancies in exposure duration, concen-
tration, and administration, many of which do not mimic those
observed in human populations worldwide (Huang et al. 2011;
Maull et al. 2012; Navas-Acien et al. 2005; Thayer et al. 2012).
Treatment with arsenite in vitro is also highly variable with regard
to both dose and duration (Maull et al. 2012). In light of these
concerns, the expert panel recommended that future arsenic
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research focus on animal studies designed to mimic internal doses
observed in humans, accompanied by low-dose in vitro studies on
cell lines involved in glucose metabolism (Maull et al. 2012;
Thayer et al. 2012).

This review highlights key in vivo studies with supporting asso-
ciations observed in vitro. This targeted approach relies on quanti-
tative methodologies to qualitatively synthesize the most relevant
studies and address inconsistencies in arsenical species, route of
administration, and duration of exposure that are reported in the lit-
erature. We provide mechanistic evidence to support epidemio-
logic findings and advance our understanding of arsenic and T2D
development.

Methods

Literature Search
We performed a literature review search using PubMed through the
Health Assessment Workspace Collaborative (HAWC) Literature
Search tool (https://hawcproject.org/) to locate studies focusing
specifically on arsenite exposure and T2D. Using the HAWC data-
base, we searched PubMed for manuscripts through 17 October
2019, using the following search terms: (“Arsenite”OR “Arsenic”
AND “Type 2 Diabetes”) OR (“Arsenite” OR “Arsenic” AND
“Insulin”) OR (“Arsenite” OR “Arsenic” AND “Adipogenesis”)
OR (“Arsenite” OR “Arsenic” AND “Glucose Transport”) OR
(“Arsenite” OR “Arsenic” AND “Liver”) OR (“Arsenite” OR
“Arsenic”AND “SkeletalMuscle”) OR (“Arsenite”OR “Arsenic”
AND “Pancreatic beta cells”) OR (“Arsenite”OR “Arsenic”AND
“Chronic”). Both arsenic and arsenite were included as search
terms to reduce the possibility of missing a potential manuscript
that fulfilled our inclusion criteria. HAWC allows researchers to
perform a PubMed database literature search where studies from
the results of the query are imported and tagged for either inclu-
sion or exclusion.

Study Selection
All studies underwent an identical tagging process and were
screened using specified inclusion and exclusion criteria. The
inclusion criteria for experimental studies and literature reviews
required reporting of both exposure to arsenite and T2D. These
criteria were established based on the research question of inter-
est, which focused on the effect of oral arsenite exposure either in
mice, rodent or human cell lines relevant to T2D to assess the
effect of the chemical on mechanisms involved in dysregulation
of glucose homeostasis. The exclusion criteria for experimental
studies and literature reviews were that a) they were administered
a chemical other than the trivalent form of arsenite, b) studies
were conducted in humans, c) studies were “reviews” or “com-
mentaries”, d) studies with in utero exposure only, e) studies relied
on nonrodent animal models, f) included arsenicals as a mixture,
or g) the assessment of the target organ or cell line was not rele-
vant to glucose homeostasis or T2D development.

Study Characterization
The study tagging was conducted by three researchers (F.C., L.R.,
and S.D.), and any inconsistencies were resolved by consensus.
HAWCwas used to manage the study selection process and create
a literature Tag-tree that illustrates study identification and classifi-
cation (Figure 1). We referred to the NTP Office of Health
Assessment and Translation (OHAT)’s risk-of-bias rating tool to
assess the quality of the animal studies included in this review
(OHAT 2015). A total of 15 animal studies were rated for each of
the 9 risk-of-bias questions outlined for animal studies by OHAT’s
guidelines (OHAT 2015). The risk-of-bias rating was based on a

four-point scale, which included definitively low risk of bias
( + + ), probably low risk of bias ( + ), probably high risk of bias
not reported (−/NR), and definitely high risk of bias (–). Based on
our assessment, there is a low probability of risk of bias (Figures
S1 and S2).

Network Analyses
In addition to the literature review, we also relied on chemical- and
disease-related gene association data using the publicly available
Comparative Toxicogenomics Database (CTD) (MDI Biological
Laboratory 2019) to identify genes that are associated with arsenic
and T2D (Davis et al. 2017). Within CTD, chemicals and diseases
are annotated with medical subject headings (MeSH) identifiers
that facilitate searching within the database. Our CTD analysis was
conducted using MeSH identifiers for sodium arsenite (MeSH:
C017947), insulin resistance (MeSH: D007333), and T2D (MeSH:
D003924).

To further investigate the biological processes enriched for the
list of genes obtained, we used the ClueGO app (Bindea et al. 2009)
within Cytoscape (version summer 2018; Cytospace Consortium)
(Lotia et al. 2013) together with the WikiPathways repository
(WikiPathways 2018; Slenter et al. 2018). Cytoscape is able to visu-
alize molecular interaction networks and integrate these with gene
expression profiles and other data. Additional features are available
as applications. For gene set enrichment analysis (GSEA), we used
the WikiPathways repository (WikiPathways 2018) containing 418
curated human pathways and 5,866 human genes. Using the
ClueGO application within Cytoscape together with GSEA enabled
the visualization of nonredundant and highly connected pathways
in one functionally grouped network. Pathway selection criteria
included a minimum number or percentage of genes (at least three
genes or 4% of the total). The selection of highly connected path-
ways was based on kappa statistics (kappa score >0:4). In this
way, functionally related biological pathways (containing the
same genes) were clustered together.

Results
We identified 4,831 manuscripts from a PubMed search in HAWC
using MeSH terms related to arsenite and T2D. After exclusion of
4,784 manuscripts, 47 were used in the final review (Figure 1;
Excel Table S1, highlighted in red). The included manuscripts
were comprised of 15 animal studies and 32 mechanistic studies.
Based on our review of the current literature, we propose biological
mechanisms to explain the association between arsenic exposure
and dysregulation of glucose homeostasis. We further explore and
validate published in vivo and in vitro targets via the use of network
analyses from publicly available data. After individual gene lists
were obtained, we identified 16 genes commonly affected by so-
dium arsenite, insulin resistance, and T2D (Figure 2).

Whole-Body Glucose Homeostasis
Overall, in vivo mouse studies show that impaired glucose toler-
ance has been observed only under exposure to high doses of ar-
senic, such as 50 ppm (Figure 3). Figure 3 provides a graphical
representation of whole-body glucose homeostasis and insulin re-
sistance observed in the in vivo studies reviewed on arsenite expo-
sure. Figure 3 reveals that exposure to lower doses of arsenic, such
as 4:9 ppm and below, does not seem to alter glucose homeostasis
in mice unless combined with genetic-induced diabetic models.

In vivo studies found impaired glucose tolerance in mice
treated at high levels (in the range of parts per million) of arsen-
ite. Persistent impaired glucose tolerance was observed in 8-wk-
old C57BL/6J male mice based on glucose tolerance tests per-
formed (Kirkley et al. 2017). In two studies by Paul et al.
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comparing 25- and 50-ppm 8-wk arsenite treatment found that
4-wk-old C57BL/6J male mice developed impaired glucose toler-
ance only at the highest exposure dose (Paul et al. 2007, 2008).
While a relatively lower dose (3 ppm) of arsenite treatment for
16 wk did not affect glucose tolerance in 7-wk-old nondiabetic
C57BLKS=Jdb=m male mice, such treatment increased suscepti-
bility to impaired glucose tolerance in 7-wk-old diabetic
C57BKS=Leprdb=db male mice (Liu et al. 2014).

Studies in genetic obese C57BKS=Leprdb=db male mice suggest
the potential for a synergistic interaction between arsenic exposure
and nutritional overload on the development of metabolic disorders.

We identified four rodent studies that assessed the effects of arsenic
coexposures with a high-fat diet (Ditzel et al. 2016; Paul et al. 2011;
Wu et al. 2008; Tan et al. 2011). Swiss Webster mice were treated
with arsenic (100 ppb) after weaning for 10 wk (to 13 wk of age)
(Ditzel et al. 2016). During the course of treatment, a high-fat diet
was administered to assess the effects on fatty liver disease. Ectopic
fatty lipid deposition and liver damage were observed in these mice
(Ditzel et al. 2016). However, despite the induction of hepatic fibro-
sis, no significant rise in homeostatic model assessment for insulin
resistance (HOMA-IR), a measure of insulin resistance, was
observed (Figure 3). (Ditzel et al. 2016). However, whenmice were

Figure 1. Literature Tag-tree illustrating the number of included and excluded studies based on author study characterization. We used relevant medical subject
headings (MeSH) terms and targeted searches using PubMed with literature tagging and visualization tools from the Health Assessment Workspace
Collaborative (HAWC) Project (hawcproject.org/).
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exposed to arsenic from embryonic day 5 to 13 wk of age and also
fed a high-fat diet afterweaning, the effects on hepatic lipid accumu-
lation and fibrosis were even more pronounced, and HOMA-IRwas
significantly elevated (Ditzel et al. 2016). These findings elucidate
important differences for in utero vs. postnatal arsenic dosing.

Insulin-Stimulated Glucose Uptake and Glucose Transport
Insulin is an anabolic hormone secreted by pancreatic b cells in
response to high blood glucose levels. One of the major functions
of insulin is to promote glucose uptake and utilization in periph-
eral tissues, such as skeletal muscle and white adipose tissue.
During insulin resistance, the ability of insulin to promote glu-
cose utilization in skeletal muscle and white adipose tissue is
impaired (Saltiel and Kahn 2001).

Using 3T3-L1 adipocytes as a model, 4 h sodium arsenite treat-
ment at 20 lM (2:6 ppm) and 100 lM (13 ppm) decreased insulin-
stimulated and basal glucose uptake (Walton et al. 2004). At
50 lM (6:5 ppm) arsenite, 4 h of exposure significantly reduced
both insulin-stimulated phosphorylated protein kinase B (AKT)
levels and the expression of AKT protein (Walton et al. 2004).
Similar concentration-dependent effects on insulin-stimulated glu-
cose uptake (ISGU) were observed with the metabolites methylar-
sine oxide and iododimethylarsine (Walton et al. 2004). Notably,
the authors did not examine whether 20 lM of arsenite treatment
for 4 h was sufficient to alter AKT expression. Xue et al. treated
3T3-L1 adipocytes with 0:25–2 lM (32–260 ppb) arsenite for 7 d
(Xue et al. 2011). The authors observed decreased insulin-
stimulated AKT phosphorylation on serine residue 473, a hallmark
of AKT activation. A significant reduction in ISGU was noted at
2 lM arsenite treatment, although a decreasing trend in glucose
uptake was observed starting at lower concentrations (0:25–1 lM)
(Xue et al. 2011). These responses were correlated to a dose-
dependent increase in intracellular GSH and the expression of nu-
clear factor-erythroid 2-related factor 2 (NRF2), which is a central

transcription factor regulating cellular adaptive response to oxida-
tive stress (Xue et al. 2011). NRF2 activity was shown to reduce
insulin-stimulated AKT phosphorylation and glucose transporter
type 4 (GLUT4) translocation in white adipose tissue of leptin defi-
cient ðLepÞob=ob mice (Xu et al. 2012).

Padmaja Divya et al. treated 3T3-L1 preadipocytes and C2C12
myoblasts with 0.5, 1, and 2 lM arsenite for 8 wk. At the end of
treatment, cells were differentiated to either adipocytes or myo-
tubes (Padmaja Divya et al. 2015). All three concentrations
decreased ISGU (Padmaja Divya et al. 2015). While 0:5 lM of
arsenite showed no significant reduction in the expression of
GLUT4 in 3T3-L1 adipocytes or C2C12 myotubes, both 1 and
2 lM arsenite decreased GLUT4 expression in these cell lines
(Padmaja Divya et al. 2015). Mitochondrial membrane potential
was also altered in 2 lM arsenite treatment in both 3T3-L1 adipo-
cytes and C2C12 myotubes (Padmaja Divya et al. 2015). This ob-
servation coincided with the decreased expression of protein
deacetylase sirtuin 3 (SIRT3) and the recruitment of forkhead box
O3 (FOXO3A), a transcription factor that regulates reactive oxy-
gen species (ROS) metabolism, to its binding sites in the manga-
nese superoxide dismutase (MnSOD) and peroxisome proliferator-
activated receptor-gamma coactivator 1 alpha (PGC1a) genes
(Sundaresan et al. 2009). Overexpression of SIRT3 and MnSOD in
C2C12 myotubes enhanced mitochondrial membrane potential and
restored ISGU (Padmaja Divya et al. 2015). Interestingly, SIRT3
appeared to deacetylate FOXO3A, MnSOD, and PGC1a (Padmaja
Divya et al. 2015). Arsenic exposure in C2C12 myoblasts led to the
deacetylation of FOXO3A at the lysine 100 residue, which pro-
moted FOXO3A’s nuclear localization and subsequent inactivation
(Padmaja Divya et al. 2015). These in vitro findings elucidated
arsenite’s role in inhibiting SIRT3–FOXO3A signaling and reduc-
ing mitochondrial activity, thereby impairing ISGU (Padmaja
Divya et al. 2015).

Arsenite exposure has widespread metabolic effects, also influ-
encing peripheral glucose uptake in the central nervous system

Figure 2. Chemical- and disease-related gene association data. Findings were obtained by searching the publicly available Comparative Toxicogenomics
Database (CTD) (MDI Biological Laboratory 2019) using medical subject headings (MeSH) identifiers for sodium arsenite (iAsIII+) (MeSH:C017947), insulin
resistance (MeSH: D007333), and type 2 diabetes (T2D) (MESH: D003924). On the left, a Venn diagram is shown depicting the overlapping genes between
the different gene sets. On the right, 16 genes are presented. Venn diagrams were created using Venny (version 2.1; BioinfoGP). Note: CTD_As III, sodium
arsenite–associated genes obtained from the CTD; CTD_IR, insulin resistance–associated genes obtained from the CTD; CTD_T2DM, type 2 diabetes melli-
tus–associated genes obtained from the CTD.
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(Rodríguez et al. 2016). The brain has an obligate glucose require-
ment and therefore is especially vulnerable to impairments to
glucose transporters (GLUT1 and GLUT3) required for glucose
to cross the blood–brain barrier and be delivered to neurons
(Rodríguez et al. 2016). Recent findings reported male C57BL/6J

mice exposed to 50 ppm for 1 month experienced a decrease in
GLUT1 andGLUT3mRNA levels in the brain, despite a lack of sig-
nificant change of serum glucose concentrations (Rodríguez et al.
2016). Interestingly, arsenite administration significantly increased
insulin receptor expression in the hippocampus (Rodríguez et al.

Figure 3. Graphical representation of the direction of the associations between oral exposure to arsenite and (A) insulin resistance, (B) impaired glucose toler-
ance, (C) organ weight, and (D) body weight, obtained from in vivo studies. Note: BW, body weight; GTT, glucose tolerance test; HOMA-IR, homeostatic
model assessment for insulin resistance; ITT, insulin tolerance test; WAT, white adipose tissue. Upward-pointing red triangle, significantly higher outcome;
downward-pointing blue triangle, significantly lower outcome; black circle, no statistical effect.
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Figure 4. Graphical representation of the direction of the associations between arsenite treatment and (A) differentiation, (B) oxidative stress and inflammation,
(C) glucose-stimulated insulin secretion (GSIS), and (D) insulin-stimulated glucose uptake (ISGU), obtained from in vitro studies. Note: AKT, protein kinase
B; ASK1, apoptosis signal-regulating kinase 1; C/EBP, CCAAT-enhancer-binding protein a and b; CHOP10, CCAAT-enhancer-binding protein homologous
protein-10; FOXO, forkhead box transcription factor; GLUT, glucose transporter type; G6Pase, glucose 6-phosphatase; NRF2, nuclear factor-erythroid
2-related factor 2; OCR, oxygen consumption rate; PERK, eukaryotic translation initiation factor 2 alpha kinase 3; PPAR, peroxisome proliferator–activated
receptor; ROS, reactive oxygen species; SIRT, sirtuin 3. Upward-pointing red triangle, significantly higher outcome; downward-pointing blue triangle, signifi-
cantly lower outcome; black circle, no statistical effect.
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2016). However, it is unclear whether the change of glucose toler-
ance was due to the reduction of GLUT1 and GLUT3 expression in
the hippocampus (Rodríguez et al. 2016).

A recent study showed impaired brown adipose tissue activity
(BAT) in female C57BL/6J mice exposed to 5 or 20 ppm arsenic for
17wk (Zuo et al. 2019).While thesemice experienced no changes in
body weight, BATmass was significantly elevated in the 5-ppm ex-
posure group, with significantly increased adipocyte droplets based
on histopathological analysis (Zuo et al. 2019). Moreover, insulin
levelswere significantly elevated at both concentrations of exposure,
with a significant decrease in genes involved in thermogenesis
[uncoupling protein 1 (UCP1) and PGC1a] andmitochondrial respi-
ratory chain activity [Cytochrome C Oxidase Subunit IV (COXIV)
and NADH:Ubiquinone Oxidoreductase Subunit S4 (NDUFS4)]
(Zuo et al. 2019). Another recent study corroborated Zuo et al.
2019’s findings inmale C57BL/6J mice exposed to 5 and 10 ppm ar-
senic for 9 d (Bae et al. 2019). Bae et al. (2019) reported arsenic accu-
mulation in BAT, with a significant decrease in lipogenesis,
autophagy, and thermogenesis (Bae et al. 2019). The authors also
found arsenite exposure to impair differentiation of HIB1B brown
preadipocytes following a 6-d exposure to arsenite at 2.5-, 5-, and
10-lM concentrations (Bae et al. 2019). Both in vivo and in vitro,
UCP1, PGC1, peroxisome proliferator–activated receptor gamma
(PPARc), and PR/SET Domain 16 (PRDM16) were all found to be
significantly decreased (Bae et al. 2019).

Studies focused on arsenic’s effects on ISGU have most fre-
quently relied on 3T3-L1 adipocytes to demonstrate impaired
effects at both high and low exposures (Figure 4). Skeletal muscle,
however, is primarily responsible for the majority of insulin-
dependent glucose utilization in the body (DeFronzo 2009). The

only cell culture model used to study the effects of arsenic on myo-
tubes has been C2C12myotubes, and arsenite exposure was shown
to impair C2C12 differentiation in vitro (Hong and Bain 2012).
Future studies should focus on the effects of arsenic on primary
myotubes isolated from both rodents and humans. A recent study
reported impaired skeletal muscle function, myofiber hypertrophy,
mitochondrial myopathy, and altered oxygen consumption after
5wk of arsenite exposure (100 ppb) in 5- to 6-wk-old C57BL/6NTac
male mice (Ambrosio et al. 2014). While these in vivo findings sup-
port the evidence found in cultured myotubes (C2C12), additional
studieswill provide valuable insight regarding arsenic toxicity.

The network analyses performed in this review support experi-
mental findings and highlight genes involved in insulin resistance
andmetabolic disorders. These include insulin, insulin receptor sub-
strate 1 and 2, and heme oxygenase 1 (Figure 2). Arsenic’s effects
on alterations in gene expression associated with these pathways
can have deleterious effects on ISGU and whole-body glucose ho-
meostasis, as demonstrated in Figures 3 and 4.

Hepatic Glucose Metabolism and Insulin Signaling
The liver is a key target tissue for arsenic-induced insulin resistance
due to its role in both arsenic metabolism and glucose production.
Insulin suppresses hepatic gluconeogenesis and glycogenolysis,
which are impaired in T2D (Basu et al. 2004). Gluconeogenesis is
mainly regulated by the modulation of the transcription of rate-
controlling enzymes in the pathway, such as phosphoenolpyruvate
carboxykinase (PCK1) and the catalytic subunit of glucose 6 phos-
phatase (G6PC) (Pilkis and Granner 1992). Insulin inhibits the tran-
scription of both PCK1 and G6PC. To inhibit glycogenolysis,

Figure 5. A network of biological pathways and connected genes that were in common between arsenic (iAs3+ ), insulin resistance, and type 2 diabetes (T2D)
as found using publicly available gene association data from the Comparative Toxicogenomics Database (CTD). A network of 12 biological pathways and 13
connected genes that were in common between iAs3+ ) exposure, insulin resistance (IR), and type 2 diabetes (T2D) as found using publicly available gene
association data from the CTD. Gene set enrichment analysis (GSEA) was performed with the Cytoscape app ClueGO using the WikiPathways repository (con-
taining 418 human pathways and 5,866 human genes) (WikiPathways 2018). Only pathways containing more than three genes or comprising 4% of the total
number of genes in a pathway are depicted in the network. Following GSEA, pathways and genes were assigned to any of the nine summarized phenotypes as
described in the paper. The colored pie charts, depicted in the network nodes, represent the different phenotypes associated with that specific pathway or gene.
For the label of the gene node, the official HUGO Gene Nomenclature Committee (HGNC)–approved human gene name is used. The label of the pathway
node contains the WikiPathway name of the pathway. Note: ADIPOQ, Adiponectin, C1Q And Collagen Domain Containing; EGFR, Epidermal Growth Factor
Receptor; INS, Insulin; IRS1, Insulin Receptor Substrate 1; IRS2, Insulin Receptor Substrate 2; LEP, Leptin; LEPR, Leptin Receptor; NOS3, Nitric Oxide
Synthase 3; PPARG, Peroxisome Proliferator Activated Receptor Gamma; SIRT1, Sirtuin 1; SLC2A4, Solute Carrier Family 2 Member 4; SOD2, Superoxide
Dismutase 2; TNF, Tumor Necrosis Factor.
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insulin activates protein phosphatase 1 that inhibits glycogen phos-
phorylase (GP), which catalyzes the rate-limiting step of glycogen-
olysis (Petersen et al. 2017).

Identified studies showed that treating C57BLKS=Jdb=m and
C57BLKS=Jdb=db male mice with 3 ppm arsenite for 16 wk
increased PCK1 overexpression (Liu et al. 2014). A rise in pro-
tein levels of Na+K+ -ATPase was observed in the liver of
arsenite-treated mice (Liu et al. 2014). Arsenite treatment did not
affect fasting blood glucose (FBG) levels in C57BLKS=Jdb=m

mice. However, arsenite treatment elevated fasting glucose levels
in C57BLKS=Jdb=db mice (Liu et al. 2014). The rates of gluco-
neogenesis and glycogenolysis were not measured in this study
(Liu et al. 2014). A similar study in C57BL/6 db/db obese mice
exposed to 10 ppm arsenite for 8 wk found a significant decrease
in phosphoenolpyruvate carboxykinase (PEPCK) and G6PC RNA
in the livers of exposed mice (Lee et al. 2014). Thus, the exact
mechanism governing the elevation of FBG is unclear in arsenic-
exposed diabetic mice.

A recent study reported a dose-dependent decrease in glycogen
content in mouse primary hepatocytes treated with low-dose
(0:5–2 lM) arsenite for 4 h (Zhang et al. 2017). Exposure to arsen-
ite resulted in a dose-dependent reduction in insulin-dependent
activation of glycogen synthase (GS), the rate-controlling enzyme
in glycogenesis, and activation of GP, the rate-controlling enzyme
in glycogenolysis (Zhang et al. 2017). Arsenite treatment for 4 h
also inhibited insulin-stimulated AKT phosphorylation at serines

308 and 473, characteristic of AKT activity (Zhang et al. 2017). In
contrast, the activity of glycogen synthase kinase 3, a downstream
effector of AKT, was not affected by exposure to arsenite (Zhang
et al. 2017).

The dose and duration of arsenic treatment in vitro can be a crit-
ical factor in identifying targets of arsenic toxicity relevant to
human exposures. A study found that chronic treatment in mice
(8 wk) with high arsenite exposure (150 ppm) resulted in hepatic
damagewith observed tissue necrosis and significantly elevated se-
rum glutamate–pyruvate transaminase (Noman et al. 2015).
HepG2 human hepatoma cells have been used as a model to study
both the long- and short-term effects of arsenite on insulin signal-
ing. While a 1-h exposure to arsenite at concentrations up to 1mM
did not alter cell viability, the authors observed a decrease in GSH
(Hamann et al. 2014). Conversely, cell viability was greatly
reduced after 24 h of arsenite treatment (Hamann et al. 2014).
HepG2 cells treated with 3 or 10 lMof arsenite for 24 h attenuated
insulin’s ability to activate AKT (Hamann et al. 2014). The phos-
phorylation of IR by insulin was reduced with exposure to 10 lM
but not 3 lM of arsenite (Hamann et al. 2014). Similar to findings
from murine primary hepatocytes, arsenite treatment did not
induce changes in GSK3 activity (Hamann et al. 2014). The phos-
phorylation of another insulin-induced downstream effector of
AKT, FOXO1, was also not affected by arsenite treatment
(Hamann et al. 2014). Surprisingly, while insulin inhibits the
expression of G6PC in healthy individuals (Hutton and O’Brien

Figure 6. Arsenite impairs insulin-stimulated glucose uptake (ISGU) in adipocytes and myotubes. Arsenite has been shown to down-regulate AKT and glucose
transporter translocation to the plasma membrane in both adipocytes and myotubes (Walton et al. 2004; Xue et al. 2011). Arsenite also up-regulates antioxidant
defenses such as NRF2 and GSH, inhibiting endogenous ROS involved in ISGU (Xue et al. 2011; Xu et al. 2012). In vitro, arsenite has been shown to inhibit
SIRT3–FOXO3A signaling to reduce mitochondrial activity and impair ISGU (Padmaja Divya et al. 2015). Note: AKT/PKB, protein kinase B; FOXO3A, fork-
head box O3; GLUT, glucose transporter type; GSH, glutathione; IR, insulin receptor; IRS1, insulin receptor substrate-1; NRF2, nuclear factor-erythroid
2-related factor 2; PIP3, phosphatidylinositol 3,4,5-triphosphate; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; SIRT3, sirtuin 3.
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2009), 24 h of arsenite treatment (1, 3, and 10 lM) also signifi-
cantly suppressed G6PC expression in Hep2G cells (Hamann et al.
2014). The combinatorial effect of insulin and arsenite on G6PC
expression, however, was not examined. For short-term exposures,
HepG2 cells treated with 100 and 300 lM of arsenite for 1 h
induced both AKT and FOXO1 phosphorylation (Hamann et al.
2014). Thus, in contrast to the inhibitory effect on insulin action
observed after 24 h arsenite treatment, 1 h of arsenite treatment
mimicked insulin-like signaling (Hamann et al. 2014). These find-
ings highlight how the duration of arsenite exposure in vitro may
have significant implications on our interpretation of epidemio-
logicfindings.

Additional studies assessing arsenic’s effects on hepatic glu-
cose regulation are needed. While the current literature is sparse,
studies suggest that low-dose arsenite treatment of more than 4 h
may alter insulin’s anabolic activity in hepatocytes in vitro. The
network analyses highlight genes involved in hepatic lipid metab-
olism and inflammation, such as SIRT1 and sterol regulatory
element-binding protein (SREBP) (Figure 5). The chemical’s
pronounced effects on liver function, hepatic steatosis, and injury
have also been widely reported in murine models (Ditzel et al.
2016; Shi et al. 2014; Noman et al. 2015). However, whether ar-
senic exposure modulates gluconeogenesis and glycogenolysis
in vivo remains unexplored.

Glucose-Stimulated Insulin Secretion and b-cell Function
Pancreatic b cells respond to elevated plasma glucose levels to
secrete insulin, which, in turn, stimulates glucose utilization in
skeletal muscle and white adipose tissue. This process allows
mammals to maintain plasma glucose levels in a narrow range of
homeostasis. An identified study showed that treating 8-wk-old

C57BL/6J male mice with 50 ppm arsenite for 8 wk resulted in
impaired glucose tolerance (Kirkley et al. 2017). Whereas no dif-
ferences in peripheral insulin sensitivity were observed between
groups, arsenic-treated mice experienced a reduction in glucose-
stimulated insulin secretion (GSIS) compared to controls (Kirkley
et al. 2017). High-dose exposure did not affect pancreatic b-cell
mass or structure, suggesting that arsenite affects b-cell function
(Kirkley et al. 2017). The ability of arsenic to induce ROS and free
radicals has been previously reported in human fibroblast cells (Hu
et al. 2002). The pancreas has low antioxidant capabilities and
therefore may be especially vulnerable to arsenic-induced oxida-
tive stress (Keane et al. 2015). INS-1832/13 cells treated with low-
dose arsenite for 24 h decreased both GSIS and mitochondrial
respiration in a dose-dependent manner (Dover et al. 2018). Low
levels (0.25 and 0:5 lM) of arsenite treatment for 96 h dampened
glucose-induced insulin secretion in INS-1 832/13 rat pancreatic
b cells by activating NRF2 activity, which activates the transcrip-
tion of genes involved in antioxidant defenses. Once activated,
these genes decreased endogenous peroxide production necessary
for adequate glucose-induced insulin secretion (Fu et al. 2010).
Arsenite treatment did not affect insulin gene expression in this
report, which suggests that the secretion of insulin, but not its syn-
thesis, is the target of arsenic toxicity (Fu et al. 2010). Additional
studies report similar findings, as arsenic was shown to attenuate
GSIS without affecting insulin synthesis in pancreatic islets from
mice (Douillet et al. 2013) and in RINm5F cells (Díaz-Villaseñor
et al. 2008) (Figure 3). Another report, however, shows that high
levels of sodium arsenite treatment (5 lM) for 72 and 144 h in pan-
creatic b cells isolated from male Wistar rats resulted in signifi-
cantly lower insulin gene expression (54 and 72%, respectively)
(Díaz-Villaseñor et al. 2006). Both dose and duration of treatment
requires careful consideration, as 5 lM significantly decreased

Figure 7. Arsenite disrupts glucose-stimulated insulin secretion (GSIS) in pancreatic b cells. Arsenite treatment in vitro has been reported to decrease calpain
activity, measured as SNAP25 proteolysis. SNAP25 and CALPAIN10 are both needed to fuse insulin presecretory granules with the plasma membrane for in-
sulin secretion. At higher doses, arenite has also been shown to increase ER oxidative stress, which can lead to apoptosis of pancreatic b cells due to the tis-
sue’s low abundance of antioxidants (Wu et al. 2018; Pan et al. 2016; Yao et al. 2015). Note: Ca2+ , calcium; ER, endoplasmic reticulum; GLUT, glucose
transporters; K, potassium; ROS, reactive oxygen species; SNAP25, synaptosome-associated protein 25.
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pancreatic b-cell viability after 144 h but not 72 h (Díaz-Villaseñor
et al. 2006).

Arsenite may reduce GSIS by interfering with calcium-
mediated signaling required for insulin secretory granule exocy-
tosis. Calpains are calcium-sensing proteases that activate proteins
such as synaptosome-associated protein 25 (SNAP25), which is
involved in insulin secretory vesicle exocytosis (Marshall et al.
2005). SNAP25 and CALPAIN10 both mediate the fusion of insu-
lin granules with the plasma membrane (Marshall et al. 2005).
While low-dose (0:5–1 lM) arsenite treatment of RINm5F rat pan-
creatic b cells for 72 h did not decrease CAPLAIN10 activity with
either basal (5:6mM) or elevated (15:6mM) glucose stimulation,
CALPAIN10 activity was significantly increased at 2 lM arsenite
treatment during both basal and elevated glucose levels (Díaz-
Villaseñor et al. 2008). Treatment with 1 lM arsenite during
insulin-stimulated glucose secretion in vitro lowered calpain activ-
ity, measured as SNAP-25 proteolysis (Díaz-Villaseñor et al.
2008). While CALPAIN10 activity was significantly increased
only after 2 lM arsenite treatment, its activity was trending
upward starting at 0:5 lM (Díaz-Villaseñor et al. 2008). Arsenite
concentrations at 1, 2, and 5 lM all significantly reduced cell via-
bility (Díaz-Villaseñor et al. 2008).

Endoplasmic reticulum (ER) stress is an additional mecha-
nism involved in impaired GSIS (Hasnain et al. 2016). Sodium
arsenite (4 lM) treatment in INS-1 cells for 3, 6, 12, and 24 h
activated ER stress, as measured by eukaryotic translation initia-
tion factor 2 alpha kinase 3 (PERK) activity (Wu et al. 2018).
Treating arsenite-treated pancreatic islets with PERK inhibitor
restored the capacity of GSIS (Wu et al. 2018). This finding sug-
gests arsenite-induced ER stress can suppress GSIS (Figure 4).
The induction of ER stress and autophagy is likely to be cell au-
tonomous, as treating INS-1 rat insulinoma cells with arsenite
(4 lM) for 6 h potentiated PERK activity and altered the expres-
sion of autophagy makers (Wu et al. 2018).

Oxidative stress induced by arsenite treatment in b cells has
been shown to induce apoptosis. INS-1 832/13 pancreatic b cells
treated with sodium arsenite (2:5–10 lM) exhibited increased in-
tracellular ROS levels and apoptosis (Pan et al. 2013). Arsenite
exposure also significantly reduced mitochondrial membrane
potential and lysosomal membrane composition (Pan et al. 2013).
Low-dose arsenite (0:25–1 lM) exposure in INS-1 832/13 pancre-
atic b cells for 96 h decreased cell viability and thioredoxin reduc-
tase (TRX) activity in a dose-dependent manner (Yao et al. 2015).
TRX is an enzyme that protects cells from oxidative damage and
also associates with and suppresses the activity of apoptosis signal-
regulating kinase 1 (ASK1), a protein kinase involved in apoptosis
(Soga et al. 2012). Indeed, the levels of ASK1 protein were
increased in cell culture media upon arsenite treatment (Yao et al.
2015). Moreover, reducing ASK1 expression by RNA interference
attenuated arsenite-induced cytotoxicity (Yao et al. 2015). Thus,
arsenic reduced TRX activity, which, in turn, activated ASK1 to
induce apoptosis in INS-1 cells. Most significantly, although NRF2
activation reduced GSIS as previously described, NRF2-induced
antioxidant response has been shown to be involved in protecting
pancreatic b cells from arsenic-induced cellular damage. Both
NRF2-knockdown MIN6 pancreatic b cells and pancreatic islets
isolated from NRF2-knockout mice experienced increased cytotox-
icity upon 2–6 h of arsenite (2–10 lM) treatment (Yang et al. 2012).
MIN6 NRF1 knockdown cells also had decreased antioxidant capa-
bilities (Cui et al. 2017). In vitro findings showed arsenite treatment
decreased cell viability (1–20 lM for 24 h) and enhanced expres-
sion of genes involved in arsenic metabolism (Cui et al. 2017).
These results further corroborate the role of arsenite-induced oxida-
tive stress in pancreatic b-cell apoptosis. HepG2 cells treated with
low-dose arsenite (0:13–2 lM) for 24 h experienced a significant

rise in C-reactive protein (CRP), which is secreted in response to
increased inflammation (Druwe et al. 2012). These experimental
findings are consistent with the increased levels of CRP observed in
FVB female mice treated with 100 ppb arsenite via drinking water
for 22 wk (Druwe et al. 2012). Another study found 16 wk of arsen-
ite (3 ppm) exposure increased inflammation, ROS, and vacuole for-
mation in pancreatic islet of db/m mice and further exacerbated
these conditions in db/dbmice (Liu et al. 2014).

In vivo studies that assess the effect of arsenic on the pancreas
were conducted by exposing rodents at parts-per-million levels for
a duration of at least 8 wk. Several of these studies showed that ar-
senic treatment increased pancreatic damage, which is in agree-
ment with in vitro studies that report exposures starting at 1 lM to
induce apoptosis. Most studies (Díaz-Villaseñor et al. 2008;
Douillet et al. 2013; Díaz-Villaseñor et al. 2006; Hamann et al.
2014) that treat with arsenic levels >1 lM report a reduction in
GSIS, which supports dose-specific effects on glucose homeostasis
(Figure 4). Studies suggest that lower dose and/or shorter exposure
duration (Fu et al. 2010; Yao et al. 2015; Wu et al. 2018; Pan et al.
2013) have the potential to induce pancreatic b-cell inflammation
and decrease pancreatic tissueweight (Liu et al. 2014; Kirkley et al.
2017). Discrepancies in experimental findings reported across ani-
mal studiesmay also be due to different susceptibilities across animal
strains and species (Gentry et al. 2004). Several mechanisms were
identified as mediating arsenic-induced b-cell apoptosis, including
up-regulated oxidative and ER stress (Figure 4). Interestingly, ar-
senic activation ofNRF2may inhibit endogenousROSnecessary for
glucose uptake and insulin secretion (Xu et al. 2012). However, the
activation of NRF2 was also shown to protect b cells from apoptosis
(Masuda et al. 2015) and therefore hasmultiple implications inmain-
taining glucose homeostasis at various arsenic exposure concentra-
tions. The network analyses performed reveal five genes associated
with oxidative stress and inflammatory responses, including comple-
ment 3 (C3), tumor necrosis factor (TNF), nitric oxide synthase 3
(NOS3), heme oxygenase 1 (HMOX1), and superoxide dismu-
tase 2 (SOD2) (Figure 5). Further investigation of these mecha-
nisms at chronic low doses relevant to human exposures is
necessary going forward (Hectors et al. 2011).

Adipose Tissue Function
White adipose tissue is the primary organ responsible for the stor-
age of lipids in the form of triglycerides. Increased lipolysis con-
tributes to ectopic lipid deposition in target tissues involved in
glucose metabolism, such as the liver and skeletal muscle (Rosen
and Spiegelman 2006). Ectopic lipid deposition is one of the major
mechanisms of insulin resistance (Rosen and Spiegelman 2006).
Thus, both excess storage of lipids in white adipose tissue, such as
obesity and lipodystrophy, have significant effects on insulin sensi-
tivity and glucose homeostasis (Rosen and MacDougald 2006;
Rosen and Spiegelman 2006). Adipose tissue is also an endocrine
organ that secretes various adipokines to modulate metabolic func-
tions (Coelho et al. 2013; Kershaw and Flier 2004). Both in vivo
and in vitro studies have found arsenic treatment to modulate adi-
pocyte function and differentiation (Figures 2 and 3, respectively).
Exposure to arsenite (5 or 50 ppm) in 4-wk-old C57BL/6J male
mice for 18 wk significantly decreased serum adiponectin levels
(Song et al. 2017), a key adipokine in insulin sensitivity (Rosen
and Spiegelman 2006; Ye and Scherer 2013). However, it remains
unclear whether the reduction of plasma adiponectin levels con-
tributes to arsenic’s effects.

Most of the in vivo studies of chronic arsenite exposure found
in our search showed no significant differences in weight gain or
overall bodymass (Figure 3) (Adebayo et al. 2015; Ambrosio et al.
2014; Kirkley et al. 2017; Song et al. 2017). Treating 5- to 6-wk-
old C57BL/6J male mice with 100 ppb arsenite for 5 wk induced
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lipid mobilization that resulted in elevated ectopic accumulation of
lipids in skeletal muscle (Garciafigueroa et al. 2013). Treating
adipocytes differentiated from human mesenchymal stem cells
(hMSCs) with 1 lMarsenite for 72 h increased glycerol release, an
indicator of the lipolytic activity in adipocytes (Garciafigueroa et al.
2013). Interestingly, arsenite treatment also resulted in lower
expression of PERILIPIN1, a lipid droplet protein found in adipo-
cytes (Garciafigueroa et al. 2013). These responses were reduced
by pertussis toxin, an inhibitor of Gi-a subunit of heterotrimeric G
protein. Indeed, antagonizing Gi-coupled endothelin-1 type A re-
ceptor attenuated arsenite’s lipolytic response, whereas antagoniz-
ing endothelin-1 type B receptor decreased the ability of arsenite to
suppress PERILIPIN1 expression (Garciafigueroa et al. 2013).
These results suggest that arsenic modulates PERILIPIN1 expres-
sion and lipolysis through different mechanisms (Figure 4).
PERILIPIN1 does, however, play an important role in the regula-
tion of lipolysis in adipocytes (Sztalryd and Brasaemle 2017).
PERILIPIN1 associates with and inhibits adipocyte triglyceride
lipase (ATGL), an enzyme that hydrolyzes triacylglycerol to diac-
ylglycerol. Upon the induction of protein kinase A (PKA) signal-
ing by norepinephrine, PERILIPIN1 is phosphorylated by PKA,
which prompts its dissociation from ATGL. Phosphorylated
PERILIPIN1 subsequently recruits phosphorylated hormone-
sensitive lipase, which hydrolyzes diacylglycerol to monoacylgly-
cerol. This process enhances lipolysis in adipocytes. Thus, reduc-
ing the expression of PERILIPIN1 will result in the augmentation
of basal lipolysis, yet also attenuate norepinephrine- and cyclic
adenosinemonophosphate cAMP-induced lipolysis.

Adipocyte number (hyperplasia) and size (hypertrophy) are im-
portant features of white adipose tissue. Five-week arsenite expo-
sure (100 ppb) in vivo was shown to reduce adipocyte numbers in
white adipose tissue (Garciafigueroa et al. 2013). These results sug-
gest arsenite treatment impairs adipogenesis (Figure 4). Pertussis
toxin and antagonists of endothelin-1 type A and B receptors
decreased arsenite’s ability to inhibit hMSCs differentiation into
adipocytes (Klei et al. 2012). Moreover, reduced expression of
endothelin-1 type A and B receptors in preadipocytes attenuated
arsenite-inhibited adipogenesis (Klei et al. 2012). These results sug-
gest that the ability of arsenite to inhibit adipogenesis, like its effect
on lipolysis, requires, at least in part, endothelin-1 type A and B
receptors.

A multitude of studies have observed the suppressive effect of
arsenite on adipogenesis (Figure 4) (Ceja-Galicia et al. 2017; Hou
2013; Trouba et al. 2000;Wauson et al. 2002). Arsenite (0:2–4 lM)
treatment of hMSCs impaired differentiation to adipocytes (Yadav
et al. 2013). Perhaps unsurprisingly, the expression of transcription
factors involved in adipogenesis, such as PPARc and CCAAT-
enhancer binding protein a and b (C=EBPa and C=EBPb), were
also reduced, whereas the expression of adipogenic inhibitor Wnt
family member 3A (Wnt3a) was increased (Yadav et al. 2013).
Arsenite treatment in 3T3-L1 preadipocytes also suppressed differ-
entiation to adipocytes (Hou et al. 2013).Arsenite treatment resulted
in higher levels of CCAAT-enhancer-binding protein homologous
protein-10 (CHOP10), an ER stress response protein involved in the
unfolded protein response (UPR) (Hou et al. 2013). CHOP10 is a
negative regulator of C=EBPb, which acts upstream of PPAR actors
involved in adipogenesis, such as PPARc and C=EBPa, in the tran-
scriptional cascade regulating adipogenesis (Hou et al. 2013). C3H
10T1/2 preadipocytes exposed to sodium arsenite (6mM) for 8 wk
also experienced altered morphology and impaired differentiation
(Trouba et al. 2000). Arsenite-treated human hMSCs (1 lM for 24
and 48 h) exhibited significantly altered function of noncoding
microRNA involved in adipogenesis (Beezhold et al. 2017; Renu
et al. 2018). Both culture adipocytes and primary hMSCs isolated
from mice treated with arsenite in vivo (100–250 ppb) increased

microRNA 29 (miR-29) and cyclin D1 (CCND1) expression, fur-
thering cell growth rather than adipogenic differentiation (Beezhold
et al. 2017).

Recent findings suggest low- and moderate-dose arsenite ex-
posure induces lipolysis and impairs adipogenesis (Renu et al.
2018). Mechanistic studies indicate a dose-dependent inhibition
of adipocyte differentiation, altering critical pro-adipogenic pro-
gramming (Figure 4). Arsenic’s effects in adipose tissue also
manifest in increased ectopic lipid deposition in both the liver
and skeletal muscle, which could contribute to the development
of insulin resistance (Renu et al. 2018). Gene lists obtained from
our network analyses complement findings in both in vivo and in
vitro studies and support adipose tissue as a target of arsenic tox-
icity. Many of the genes highlighted in the network analyses
(Figure 5) are directly involved in adipogenesis, altered energy
storage, adipokine secretion, and ectopic lipid deposition, further
supporting the experimental evidence reported. Figure 5 lists the
pathways related to arsenic-induced insulin resistance and also
depicts the interaction network of both these pathways and select
genes identified.

Trivalent Arsenical Metabolites: DMAIII1 and MMAIII1

Since epidemiologic studies have reported the association of ar-
senic and T2D, the primary focus of laboratory research in the
context of diabetes has relied on the parent compound as the
chemical of exposure (Castriota et al. 2018; Farzan et al. 2017;
Grau-Perez et al. 2017; Pan et al. 2013; Peng et al. 2015). Recent
evidence, however, has shown trivalent arsenical species interfere
with metabolic pathways responsible for glucose homeostasis. A
dose-dependent decrease in mitochondrial respiration associated
with GSIS in INS-1 832/13 pancreatic b cells was observed for
both arsenite and MMAIII+ but not for DMAIII+ (Dover et al.
2018). MMAIII+ decreased GSIS in INS-1 cells after 24 h ex-
posure at both 0.375 and 0:5 lM (Dover et al. 2018). There
was, however, no significant decrease observed upon 24 h
DMA exposure, even at the highest dose (Dover et al. 2018).
This research highlights key differences in the effects of arseni-
cal species on GSIS, warranting increased laboratory research
on this pathway.

Four hours of exposure to arsenite and MMAIII+ concentra-
tions as low as 0:5–2 lM decreased glycogen levels in insulin-
stimulated primary murine hepatocytes by interfering with rate-
limiting glycogenesis genes GS and GP and increasing glucose
output (Zhang et al. 2017). Both arsenite and MMAIII+ down-
regulated GS and up-regulated GP, in addition to inhibiting AKT
phosphorylation, insulin’s regulatory step for glycogen synthesis
(Zhang et al. 2017). This finding parallels results of arsenic-treated
adipocytes, with impaired AKT-dependent GLUT4 mobilization
in trivalent arsenical-treated 3T3-L1 preadipocytes (Walton et al.
2004).

3T3-L1 preadipocytes, adipose-derived stromal vascular fraction
cells (ADSVFCs), and human adipose tissue-derived stem cells
(hADSCs), treatedwith low concentrations ofDMAIII+ (≤2 lM) or
MMAIII+ (≤1 lM), all experienced impaired adipogenesis medi-
ated by UPR and ER stress (Hou et al. 2013). While arsenite and
MMAIII+ interfered with adipogenesis via CHOP10 in the early
stages of differentiation, DMAIII+ did not, suggesting its antiadipo-
genic effects are mediated via a different target (Hou et al. 2013).
In addition, greater cytotoxicity was observed for bothMMAIII+

and DMAIII+ in 3T3-L1 preadipocytes, SVCs, and hADSCs
compared to arsenite (Hou et al. 2013). Future research should
focus on the specific effects of trivalent arsenical metabolites on
metabolic pathways to increase our understanding of the diabeto-
genic potential of arsenicmetabolism and its intermediates.
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Discussion
Our review of the literature on the laboratory research of arsenite
exposure and its effects on glucose homeostasis suggests that sev-
eral mechanisms may be involved, including insulin-stimulated
glucose uptake, glucose-stimulated insulin secretion, hepatic glu-
cose metabolism, and adipose and pancreatic b-cell dysfunction.
Arsenite has wide physiological effects, affecting multiple meta-
bolic organs involved in glucose homeostasis. Although the effects
of arsenic exposure on the integrity and the physiology of various
tissues are reported (Figure 3), the molecular mechanisms underly-
ing these findings aremostly unknown. The in vitro studies and tar-
gets identified via omic databases of publicly available data have
the potential to unravel these mechanisms. Different strains of
rodents that respond to arsenic differently could also be used. The
expert panel assembled by the NTP has therefore encouraged
researchers to assess arsenic’s metabolic effects in strains suscepti-
ble to thesemetabolic end points (Maull et al. 2012).

Current advances in omics technologies have been paralleled
with the use of publicly available databases. Together, these tools
have the ability to expand our understanding of chemically induced
diseases. A recent study on the use of the CTD for the creation of
adverse outcome pathways assessed arsenical exposures and dys-
regulation of glucose homeostasis as one of its primary case studies
(Davis et al. 2018). This further emphasizes the relevance of eluci-
dating potential mechanisms of action for a relevant topic in the
fields of comparative toxicogenomics and environmental epidemi-
ology (Davis et al. 2018). We were able to identify 16 genes com-
monly affected by sodium arsenite, insulin resistance, and T2D. A
potential limitation of using specific key terms is the potential of
missing relevant genes, exemplified by the hypermethylation of
potassium voltage-gated channel subfamily Qmember 1 (KCNQ1),
a gene involved in insulin secretion that did not appear in our origi-
nal search. Despite this limitation, MeSH identifiers continue to be
widely used based on narrow research criteria.

Evidence from in vitro and in vivo studies suggest that arsenite
interferes with signaling involved in glucose uptake and insulin
secretion, down-regulating molecular targets such as AKT and glu-
cose transporters (GLUT1, GLUT3, and GLUT4), and calcium sig-
naling pathways involved in insulin exocytosis and secretion from
pancreatic b cells, respectively (Figures 6 and 7). Arsenite has been
shown to interfere with adipogenesis, which has implications for
altered energy storage (Rosen and Spiegelman 2006).Hepaticmani-
festations are also present upon exposure, with the up-regulation of
PCK1and other rate-limiting enzymes of gluconeogenesis (Liu et al.
2014). Trivalent methylated arsenical metabolites MMA and DMA
share similar effects to their parent compound, interfering with met-
abolic pathways involved in glucose homeostasis (Zhang et al.
2017; Hou et al. 2013; Douillet et al. 2013).

The 16 genes identified in our CTD analysis encode proteins
that are involved in glucose homeostasis, oxidative stress, inflam-
mation, lipid metabolism, energy balance, lipid metabolism, and
adipogenesis, among other processes. Among the genes identified,
insulin, insulin receptor, insulin receptor substrate 1 and 2 (IRS1
and IRS2, respectively), and Solute Carrier Family 2 Member 4
(SLC2A4) (also known as GLUT4) are components of the insulin
signaling pathway that regulate glucose utilization in peripheral
tissues (Rosen and Spiegelman 2006). Leptin and leptin receptor
are components of leptin signaling, which increases satiety and
controls energy balance. PPARc encodes a nuclear receptor that
positively regulates insulin sensitivity (Rosen and Spiegelman
2006). Thiazolidinediones, a class of antidiabetic drugs, act as ago-
nists of PPARc (Tontonoz and Spiegelman 2008). As discussed
above, adiponectin (ADIPOQ) encodes a hormone secreted from
white adipose tissue that improves insulin sensitivity (Rosen and
Spiegelman 2006). An additional five genes (C3, TNF, NOS3,

HMOX1, and SOD2) encode proteins involved in the inflamma-
tory response. SOD2 (MnSOD) protein also clears mitochondrial
ROS to reduce oxidative stress (Padmaja Divya et al. 2015).
Interestingly, this analysis suggests that advanced glycosylated
end products bind to their receptors, which can activate inflamma-
tory pathways. Altogether, these genes provide strong evidence to
support the association between arsenic dysregulation in various
metabolic tissues.

There remains a need to critically determine which in vitro and
in vivo study designs are most relevant to human exposures. The
expression of As3MT in different cell lines may vary substantially,
impacting the kinetics of arsenite metabolism and its effects in tar-
gets involved in glucose homeostasis. The assessment of sodium
arsenite metabolism in four animal species, including rat, hamster,
guinea pig, and mouse, found mice to be the most appropriate
model to evaluate arsenic toxicity (Mitchell et al. 2000). While
micemetabolize arsenic more quickly than humans, they have sim-
ilar distribution parameters (Mitchell et al. 2000). Since arsenic
metabolism kinetics differ between animal models and humans,
calculations based solely on allometric scaling may not be valid
and therefore are usually not reported (States et al. 2011). The limi-
tation of using mouse models is commonly due to low biological
sample availability (e.g., plasma, urine, tissue) due to the animal’s
small mass (Mitchell et al. 2000). Rats are considered a less appro-
priate animal model for arsenic metabolism as a proxy for human
exposures than other mammalian models (ATSDR 2007; Lu et al.
2004; Mitchell et al. 2000). While circulating DMAIII+ inorganic
arsenic metabolite is accumulated in erythrocytes in rats, humans
experience arsenic retention in epithelial tissues, such as the skin
and lung (Lu et al. 2004).

Rodents either metabolize arsenic quicker or sequester it in
blood cells and thus require concentrations of arsenic above those
found in exposed populations to achieve similar internal doses
(Maull et al. 2012). However, few studies report internal dose
calculations, which require comprehensive water consumption
estimates (States et al. 2011). The current literature also includes
a broad duration of exposure periods, ranging from a few days to
years (Maull et al. 2012). Routes of arsenic administration also
vary and include oral exposure via drinking water, oral gavage,
and intraperitoneal injection (Maull et al. 2012). The use of
genetic biomarkers and histopathology of select tissues have
instead been more widely employed to convey equivalence to ar-
senic toxicity in humans (States et al. 2011).

Conclusions
While epidemiology studies have linked arsenic exposure to the
development of T2D in populations worldwide, the current mech-
anism by which arsenic contributes to dysregulation of glucose
homeostasis remains elusive in humans despite well-established
laboratory models. In the last two decades, efforts have focused
on assessing arsenic’s effects on metabolic target tissues, includ-
ing the pancreas, adipose, liver, and skeletal muscle. Most in vivo
studies have relied on rodents, administering higher arsenite con-
centrations at parts-per-million levels due to the species’ acceler-
ated arsenic metabolism compared to humans. Nonetheless, it is
critical to model our experimental designs to internal doses that
are relevant to human health and exposures. Human exposure
assessment is also limited by the measurement of total arsenic
concentration, which also includes organic arsenicals that are not
considered hazardous to human health and irrelevant to toxicity
associated with inorganic arsenic exposures.

Inconsistencies in the literature highlight the need for addi-
tional research characterizing themetabolic effects at chronic, low-
dose exposures. High-exposure in vivo studies have shown that ar-
senic treatment alone can reduce GSIS (Liu et al. 2014; Kirkley
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et al. 2017; Lee et al. 2014). High-exposure in vivo studies report
arsenic treatment alone to affect glucose homeostasis by damaging
the integrity of the pancreas, interfering with GSIS (Liu et al.
2014). However, lower-dose arsenite treatment alone has been
found to exacerbate genetic and diet-induced insulin resistance and
impaired glucose tolerance (Liu et al. 2014; Ditzel et al. 2016; Paul
et al. 2011). In vitro studies of pancreatic b cells mostly confirm
that high-dose arsenic exposure increases apoptosis, whereas low-
dose arsenic inhibits GSIS (Pan et al. 2013; Lu et al. 2011; Díaz-
Villaseñor et al. 2008). Many other in vitro results, however,
require the corroboration of in vivo studies. For example, arsenic
has been shown to affect ISGU in adipocytes andmyotubes, increas-
ing the breakdown of glycogen in hepatocytes and inhibiting insulin
signaling in these cell types (Padmaja Divya et al. 2015). However,
the effects of arsenic on peripheral glucose utilization and hepatic
glucose production and insulin signaling in vivo have not been
extensively explored. Another area of increasing interest is the inter-
action between arsenic and obesity, as an excess bodymass index is
a causal factor for T2D development. A recent study suggested a
synergistic relationship with chronic arsenic exposure and obesity
on T2D, with obese individuals being the most susceptible to T2D
development (Castriota et al. 2018).

We used publicly available omics data and performed pathway
identification using online tools to validate the relationship between
arsenic andT2D, complementing experimentalfindings. This analy-
sis resulted in the identification of key genes and pathways involved
in arsenite-induced insulin. These data-driven approaches can assist
researchers to harmonize, summarize, and structure existingmecha-
nistic knowledge underlying arsenite-induced dysregulation of glu-
cose homeostasis. These techniques can identify knowledge gaps
and aid in the development ofmore focused study designs.

Insulin resistance is a chronic condition with epidemic pro-
portions. The increasing prevalence of T2D both domestically
and worldwide, in addition to arsenic’s widespread exposure,
motivates our efforts to determine arsenic’s contribution to the
etiology of this metabolic disorder (Zimmet et al. 2016). We
hope this review will help to inform public health interventions
due to the growing burden of T2D and ongoing arsenic exposure
in vulnerable communities worldwide.
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